# code for loading the format for the notebook
import os
# path : store the current path to convert back to it later
path = os.getcwd()
os.chdir(os.path.join('..', '..', 'notebook_format'))
from formats import load_style
load_style(plot_style = False)
os.chdir(path)
# magic to print version
%load_ext watermark
%watermark -a 'Ethen' -d -t -v
Basic concepts:
First class functions
allow us to treat functions like any other object, so for example: we can pass functions as arguments to another function, return functions and we can assign functions to variables. Closures
allows us to take advantage of First class functions
that returns an inner function that remembers and has access to variables local to the scope in which they were created.More detailed description in the following link. Youtube: Programming Terms: First-Class Functions.
# we can assign functions to variables
def greet(name) :
return 'Hello ' + name
greet_someone = greet
print(greet_someone('John'))
# we can define functions inside other functions
def greet(name) :
def get_message() :
return 'Hello '
result = get_message() + name
return result
print(greet('John'))
# functions can be passed as parameters to other functions
def greet(name):
return 'Hello ' + name
def call_func(func):
other_name = 'John'
return func(other_name)
print(call_func(greet))
# functions can return other functions
def compose_greet_func():
def get_message():
return 'Hello John'
return get_message
greet = compose_greet_func()
print(greet())
# scoping, access the inner functions.
# note that python only allows read access to the outer scope and not assignment
def compose_greet_func(name):
def get_message():
return 'Hello ' + name
return get_message
greet = compose_greet_func('John')
print(greet())
A decorator is basically a function that takes another function as an argument, adds some kind of functionality and then returns another function. So why would we want to do something like this? Well, it's because this allows us to easily add or alter the functionality to our existing function method or class without having to directly use its subclasses. In short, decorators are simply wrappers to existing functions.
In the example below, the p_decorate
function takes another function as an argument and generates a new function which augments the work of the original function, and returning the generated function so we can use it anywhere else.
def get_text(name):
return 'Hello {}'.format(name)
def p_decorate(func):
def func_wrapper(name):
return '<p>{0}</p>'.format(func(name))
return func_wrapper
# pass in the function to the decorator function,
# and note that the decorator function returns
# the wrapper function that's waiting to be executed
my_get_text = p_decorate(get_text)
print(my_get_text('John'))
And in python, there's neat shortcut for that, which is to mention the name of the decorating function before the function to be decorated. and perpend the decorator with an @ symbol.
So instead of calling p_decorate(get_text)
. It becomes:
@p_decorate
def get_text(name):
return 'Hello {}'.format(name)
# adding the decorator alters the functionality of
# `get_text` without having to change any piece of code
# in `get_text`
print(get_text('John'))
Using multiple decorators. Note the ordering matters.
def get_text(name):
return 'Hello {}'.format(name)
def p_decorate(func):
def func_wrapper(name):
return '<p>{0}</p>'.format(func(name))
return func_wrapper
def strong_decorate(func):
def func_wrapper(name):
return '<strong>{0}</strong>'.format(func(name))
return func_wrapper
def div_decorate(func):
def func_wrapper(name):
return '<div>{0}</div>'.format(func(name))
return func_wrapper
# the original way
get_text1 = div_decorate(p_decorate(strong_decorate(get_text)))
print(get_text1('John'))
# the decorator way
@div_decorate
@p_decorate
@strong_decorate
def get_text(name):
return 'Hello {}'.format(name)
print(get_text('John'))
We can build decorators for class's methods in a similar fashion. We can do this by putting *args
and **kwargs
as parameters for the wrapper, then it can accept any arbitrary number of arguments and keyword arguments. This approach will make our decorators work for both functions and methods alike.
# You can also use it with class's methods.
def p_decorate(func):
def func_wrapper(*args, **kwargs):
return '<p>{0}</p>'.format(func(*args, **kwargs))
return func_wrapper
class Person:
def __init__(self):
self.name = 'John'
self.family = 'Doe'
@p_decorate
def get_fullname(self):
return self.name + ' ' + self.family
my_person = Person()
print(my_person.get_fullname())
# Another example of using *args and **kwargs when working the function
def decorator_function1(original_function):
def wrapper_function(*args, **kwargs):
print('wrapper executed this before {}'.format(original_function.__name__))
return original_function(*args, **kwargs)
return wrapper_function
@decorator_function1
def display_info(name, age):
print('display info ran with arguments ({}, {})'.format(name, age))
display_info('John', 25)
Looking back at the example above, you can notice how redundant the decorators in the example are. 3 decorators, div_decorate
, p_decorate
, strong_decorate
each with the same functionality but wrapping the string with different tags. We can definitely do much better than that. Why not have a more general implementation for one that takes the tag to wrap with as a argument? Yes please!
def tags(tag_name):
def tags_decorator(func):
def func_wrapper(name):
return '<{0}>{1}</{0}>'.format(tag_name, func(name))
return func_wrapper
return tags_decorator
@tags('p')
def get_text(name):
return 'Hello ' + name
print(get_text('John'))
In this case, our decorators expect to receive an additional argument, that is why we will have to build a function that takes those extra arguments and generate our decorator on the fly.
At the end of the day decorators are just wrapping our functions, in case of debugging that can be problematic since the wrapper function does not carry the name, module and docstring of the original function.
# it prints out the name of the decorator instead
# of the original function because it got overridden
print(get_text.__name__)
Fortunately, python includes the functools
module which contains wraps
. Wraps
is a decorator for updating the attributes of the wrapping function(func_wrapper) to those of the original function(get_text). This is as simple as decorating func_wrapper by @wraps(func)
. Here is the updated example:
from functools import wraps
def tags(tag_name):
def tags_decorator(func):
@wraps(func)
def func_wrapper(name):
return '<{0}>{1}</{0}>'.format(tag_name, func(name))
return func_wrapper
return tags_decorator
@tags('p')
def get_text(name):
"""returns some text"""
return 'Hello ' + name
print(get_text('John'))
print(get_text.__name__) # get_text
print(get_text.__doc__ ) # returns some text
Adding timing and logging to functions.
import time
import logging
def logger(func):
"""
create logging for the function,
re-define the format to add specific logging time
"""
@wraps(func)
def wrapper(*args, **kwargs):
logging.basicConfig(
filename = '{}.log'.format( func.__name__ ),
format = '%(asctime)s -- %(levelname)s:%(name)s: %(message)s',
datefmt = '%Y/%m/%d-%H:%M:%S',
level = logging.INFO)
# custom the logging information
logging.info('Ran with args: {} and kwargs: {}'.format(args, kwargs))
return func(*args, **kwargs)
return wrapper
def timer(func):
"""time the running time of the passed in function"""
@wraps(func)
def wrapper(*args, **kwargs):
t1 = time.time()
result = func(*args, **kwargs)
t2 = time.time() - t1
print('{} ran in: {} sec'.format(func.__name__, t2))
return result
return wrapper
@timer
def display_info(name, age):
time.sleep(1) # manually add a second to the timing
print('display info ran with arguments ({}, {})'.format(name, age))
display_info('John', 25)
# http://stackoverflow.com/questions/18786912/get-output-from-the-logging-module-in-ipython-notebook
# ipython notebook already call basicConfig somewhere, thus reload the logging
from importlib import reload
reload(logging)
@logger
def display_info(name, age):
print('display info ran with arguments ({}, {})'.format(name, age))
display_info('John', 25)
Both time and log the function
@logger
@timer
def display_info(name, age):
time.sleep(1) # manually add a second to the timing
print('display info ran with arguments ({}, {})'.format(name, age))
display_info('Tom', 22)
# good idea to add @wraps to your decorator for debugging
display_info.__name__
The good thing about writing the timing and logging function as decorators is that we can use them without having the re-write the logic every time we wish to use timing or logging functionality.